如何实现移动设备的通用手势识别?
移动设备多用手势进行输入,用户通过手指在屏幕上画出一个特定符号,计算机识别出来后给予响应的反应,要比让用户点击繁琐的按钮为直接和有趣,而如果为每种手势编写一段识别代码的话是件得不偿失的事情。如何设计一种通用的手势识别算法来完成上面的事情呢? 我们可以模仿笔记识别方法,实现一个简单的笔画识别模块,流程如下:
第一步:手势归一化
1. 手指按下时开始记录轨迹点,每划过一个新的点就记录到手势描述数组guesture中,直到手指离开屏幕。 2. 将gesture数组里每个点的x,y坐标最大值与最小值求出中上下左右的边缘,求出该手势路径点的覆盖面积。 3. 手势坐标归一化:以手势中心点为原点,将gesture里顶点归一化到 -1<=x<=1, -1<=y<=1空间中。 4. 数组长度归一化:将手势路径按照长度均匀划分成32段,用共32个新顶点替换guestue里的老顶点。
第二步:手势相似度
1. 手势点乘:
g1 * g2 = g1.x1*g2.x1 + g1.y1*g2.y1 + … + g1.x32*g2.x32 + g1.y32*g2.y32
2. 手势相似:
相似度(g1, g2) = g1 * g2 / sqrt(g1 * g1 + g2 * g2)
由此我们可以根据两个手势的相似度算成一个分数score。用户输入了一个手势g,我们回合手势样本中的所有样本g1-gn打一次相似度分数,然后求出相似度最大的那个样本gm并且该分数大于某个特定阀值(比如0.8),即可以判断用户输入g相似于手势样本 gm !